Google BigQuery The Definitive Guide

BigQuery enables enterprises to efficiently store, query, ingest, and learn from their data in a convenient framework. With this book, you’ll examine how to analyze data at scale to derive insights from large datasets efficiently.

Author: Valliappa Lakshmanan

Publisher: O'Reilly Media

ISBN: 1492044431

Category: Computers

Page: 498

View: 521

Work with petabyte-scale datasets while building a collaborative, agile workplace in the process. This practical book is the canonical reference to Google BigQuery, the query engine that lets you conduct interactive analysis of large datasets. BigQuery enables enterprises to efficiently store, query, ingest, and learn from their data in a convenient framework. With this book, you’ll examine how to analyze data at scale to derive insights from large datasets efficiently. Valliappa Lakshmanan, tech lead for Google Cloud Platform, and Jordan Tigani, engineering director for the BigQuery team, provide best practices for modern data warehousing within an autoscaled, serverless public cloud. Whether you want to explore parts of BigQuery you’re not familiar with or prefer to focus on specific tasks, this reference is indispensable.

Learning Google BigQuery

This book will serve as a comprehensive guide to mastering BigQuery, and how you can utilize it to quickly and efficiently get useful insights from your Big Data.

Author: Thirukkumaran Haridass

Publisher:

ISBN: 9781787288591

Category: Computers

Page: 264

View: 316

Get a fundamental understanding of how Google BigQuery works by analyzing and querying large datasets Key Features Get started with BigQuery API and write custom applications using it Learn how BigQuery API can be used for storing, managing, and query massive datasets with ease A practical guide with examples and use-cases to teach you everything you need to know about Google BigQuery Book Description Google BigQuery is a popular cloud data warehouse for large-scale data analytics. This book will serve as a comprehensive guide to mastering BigQuery, and how you can utilize it to quickly and efficiently get useful insights from your Big Data. You will begin with getting a quick overview of the Google Cloud Platform and the various services it supports. Then, you will be introduced to the Google BigQuery API and how it fits within in the framework of GCP. The book covers useful techniques to migrate your existing data from your enterprise to Google BigQuery, as well as readying and optimizing it for analysis. You will perform basic as well as advanced data querying using BigQuery, and connect the results to various third party tools for reporting and visualization purposes such as R and Tableau. If you're looking to implement real-time reporting of your streaming data running in your enterprise, this book will also help you. This book also provides tips, best practices and mistakes to avoid while working with Google BigQuery and services that interact with it. By the time you're done with it, you will have set a solid foundation in working with BigQuery to solve even the trickiest of data problems. What you will learn Get a hands-on introduction to Google Cloud Platform and its services Understand the different data types supported by Google BigQuery Migrate your enterprise data to BigQuery and query it using the legacy and standard SQL techniques Use partition tables in your project and query external data sources and wild card tables Create tables and data sets dynamically using the BigQuery API Perform real-time inserting of records for analytics using Python and C# Visualize your BigQuery data by connecting it to third party tools such as Tableau and R Master the Google Cloud Pub/Sub for implementing real-time reporting and analytics of your Big Data Who this book is for If you are a developer, data analyst, or a data scientist looking to run complex queries over thousands of records in seconds, this book will help you. No prior experience of working with BigQuery is assumed.

Learning Google BigQuery

Learning Google BigQuery is filled with unique and comprehensive information
about Google's petabyte-scale data warehouse solution, Google BigQuery,
hosted on Google Cloud Platform. This book also covers other services on
Google ...

Author: Thirukkumaran Haridass

Publisher: Packt Publishing Ltd

ISBN: 1787286290

Category: Computers

Page: 264

View: 463

Get a fundamental understanding of how Google BigQuery works by analyzing and querying large datasets About This Book Get started with BigQuery API and write custom applications using it Learn how BigQuery API can be used for storing, managing, and query massive datasets with ease A practical guide with examples and use-cases to teach you everything you need to know about Google BigQuery Who This Book Is For If you are a developer, data analyst, or a data scientist looking to run complex queries over thousands of records in seconds, this book will help you. No prior experience of working with BigQuery is assumed. What You Will Learn Get a hands-on introduction to Google Cloud Platform and its services Understand the different data types supported by Google BigQuery Migrate your enterprise data to BigQuery and query it using the legacy and standard SQL techniques Use partition tables in your project and query external data sources and wild card tables Create tables and data sets dynamically using the BigQuery API Perform real-time inserting of records for analytics using Python and C# Visualize your BigQuery data by connecting it to third party tools such as Tableau and R Master the Google Cloud Pub/Sub for implementing real-time reporting and analytics of your Big Data In Detail Google BigQuery is a popular cloud data warehouse for large-scale data analytics. This book will serve as a comprehensive guide to mastering BigQuery, and how you can utilize it to quickly and efficiently get useful insights from your Big Data. You will begin with getting a quick overview of the Google Cloud Platform and the various services it supports. Then, you will be introduced to the Google BigQuery API and how it fits within in the framework of GCP. The book covers useful techniques to migrate your existing data from your enterprise to Google BigQuery, as well as readying and optimizing it for analysis. You will perform basic as well as advanced data querying using BigQuery, and connect the results to various third party tools for reporting and visualization purposes such as R and Tableau. If you're looking to implement real-time reporting of your streaming data running in your enterprise, this book will also help you. This book also provides tips, best practices and mistakes to avoid while working with Google BigQuery and services that interact with it. By the time you're done with it, you will have set a solid foundation in working with BigQuery to solve even the trickiest of data problems. Style and Approach This book follows a step-by-step approach to teach readers the concepts of Google BigQuery using SQL. To explain various data querying processes, large-scale datasets are used wherever required.

Learning Google BigQuery

Get a fundamental understanding of how Google BigQuery works by analyzing and querying large datasets About This Book Get started with BigQuery API and write custom applications using it Learn how BigQuery API can be used for storing, ...

Author: Thirukkumaran Haridass

Publisher: Packt Publishing Ltd

ISBN: 1787286290

Category: Computers

Page: 264

View: 918

Get a fundamental understanding of how Google BigQuery works by analyzing and querying large datasets About This Book Get started with BigQuery API and write custom applications using it Learn how BigQuery API can be used for storing, managing, and query massive datasets with ease A practical guide with examples and use-cases to teach you everything you need to know about Google BigQuery Who This Book Is For If you are a developer, data analyst, or a data scientist looking to run complex queries over thousands of records in seconds, this book will help you. No prior experience of working with BigQuery is assumed. What You Will Learn Get a hands-on introduction to Google Cloud Platform and its services Understand the different data types supported by Google BigQuery Migrate your enterprise data to BigQuery and query it using the legacy and standard SQL techniques Use partition tables in your project and query external data sources and wild card tables Create tables and data sets dynamically using the BigQuery API Perform real-time inserting of records for analytics using Python and C# Visualize your BigQuery data by connecting it to third party tools such as Tableau and R Master the Google Cloud Pub/Sub for implementing real-time reporting and analytics of your Big Data In Detail Google BigQuery is a popular cloud data warehouse for large-scale data analytics. This book will serve as a comprehensive guide to mastering BigQuery, and how you can utilize it to quickly and efficiently get useful insights from your Big Data. You will begin with getting a quick overview of the Google Cloud Platform and the various services it supports. Then, you will be introduced to the Google BigQuery API and how it fits within in the framework of GCP. The book covers useful techniques to migrate your existing data from your enterprise to Google BigQuery, as well as readying and optimizing it for analysis. You will perform basic as well as advanced data querying using BigQuery, and connect the results to various third party tools for reporting and visualization purposes such as R and Tableau. If you're looking to implement real-time reporting of your streaming data running in your enterprise, this book will also help you. This book also provides tips, best practices and mistakes to avoid while working with Google BigQuery and services that interact with it. By the time you're done with it, you will have set a solid foundation in working with BigQuery to solve even the trickiest of data problems. Style and Approach This book follows a step-by-step approach to teach readers the concepts of Google BigQuery using SQL. To explain various data querying processes, large-scale datasets are used wherever required.

Machine Learning with BigQuery ML

This book will help you to accelerate the development and deployment of ML models with BigQuery ML. The book starts with a quick overview of Google Cloud and BigQuery architecture.

Author: Alessandro Marrandino

Publisher: Packt Publishing Ltd

ISBN: 1800562187

Category: Computers

Page: 344

View: 714

Manage different business scenarios with the right machine learning technique using Google's highly scalable BigQuery ML Key Features Gain a clear understanding of AI and machine learning services on GCP, learn when to use these, and find out how to integrate them with BigQuery ML Leverage SQL syntax to train, evaluate, test, and use ML models Discover how BigQuery works and understand the capabilities of BigQuery ML using examples Book Description BigQuery ML enables you to easily build machine learning (ML) models with SQL without much coding. This book will help you to accelerate the development and deployment of ML models with BigQuery ML. The book starts with a quick overview of Google Cloud and BigQuery architecture. You'll then learn how to configure a Google Cloud project, understand the architectural components and capabilities of BigQuery, and find out how to build ML models with BigQuery ML. The book teaches you how to use ML using SQL on BigQuery. You'll analyze the key phases of a ML model's lifecycle and get to grips with the SQL statements used to train, evaluate, test, and use a model. As you advance, you'll build a series of use cases by applying different ML techniques such as linear regression, binary and multiclass logistic regression, k-means, ARIMA time series, deep neural networks, and XGBoost using practical use cases. Moving on, you'll cover matrix factorization and deep neural networks using BigQuery ML's capabilities. Finally, you'll explore the integration of BigQuery ML with other Google Cloud Platform components such as AI Platform Notebooks and TensorFlow along with discovering best practices and tips and tricks for hyperparameter tuning and performance enhancement. By the end of this BigQuery book, you'll be able to build and evaluate your own ML models with BigQuery ML. What you will learn Discover how to prepare datasets to build an effective ML model Forecast business KPIs by leveraging various ML models and BigQuery ML Build and train a recommendation engine to suggest the best products for your customers using BigQuery ML Develop, train, and share a BigQuery ML model from previous parts with AI Platform Notebooks Find out how to invoke a trained TensorFlow model directly from BigQuery Get to grips with BigQuery ML best practices to maximize your ML performance Who this book is for This book is for data scientists, data analysts, data engineers, and anyone looking to get started with Google's BigQuery ML. You'll also find this book useful if you want to accelerate the development of ML models or if you are a business user who wants to apply ML in an easy way using SQL. Basic knowledge of BigQuery and SQL is required.

Data Analytics with Google Cloud Platform

At this juncture, this book will be very vital and will cover all the services that are being offered by GCP, putting emphasis on Data services. This book starts with sophisticated knowledge on Cloud Computing.

Author: Murari Ramuka

Publisher: BPB Publications

ISBN: 9389423635

Category: Computers

Page: 266

View: 159

Step-by-step guide to different data movement and processing techniques, using Google Cloud Platform Services DESCRIPTION Modern businesses are awash with data, making data-driven decision-making tasks increasingly complex. As a result, relevant technical expertise and analytical skills are required to do such tasks. This book aims to equip you with enough knowledge of Cloud Computing in conjunction with Google Cloud Data platform to succeed in the role of a Cloud data expert. The current market is trending towards the latest cloud technologies, which is the need of the hour. Google being the pioneer, is dominating this space with the right set of cloud services being offered as part of GCP (Google Cloud Platform). At this juncture, this book will be very vital and will cover all the services that are being offered by GCP, putting emphasis on Data services. This book starts with sophisticated knowledge on Cloud Computing. It also explains different types of data services/technology and machine learning algorithm/Pre-Trained API through real-business problems, which are built on the Google Cloud Platform (GCP). With some of the latest business examples and hands-on guide, this book will enable the developers entering the data analytics fields to implement an end-to-end data pipeline, using GCP Data services. Through the course of the book, you will come across multiple industry-wise use cases, like Building Datawarehouse using Big Query, a sample real-time data analytics solution on machine learning and Artificial Intelligence that helped with the business decision, by employing a variety of data science approaches on Google Cloud environment. Whether your business is at the early stage of cloud implementation in its journey or well on its way to digital transformation, Google Cloud's solutions and technologies will always help chart a path to success. This book can be used to develop the GCP concepts in an easy way. It contains many examples showcasing the implementation of a GCP service. It enables the learning of the basic and advance concepts of Google Cloud Data Platform. This book is divided into 7 chapters and provides a detailed description of the core concepts of each of the Data services offered by Google Cloud. KEY FEATURES Learn the basic concept of Cloud Computing along with different Cloud service provides with their supported Models (IaaS/PaaS/SaaS) Learn the basics of Compute Engine, App Engine, Container Engine, Project and Billing setup in the Google Cloud Platform Learn how and when to use Cloud DataFlow, Cloud DataProc and Cloud DataPrep Build real-time data pipeline to support real-time analytics using Pub/Sub messaging service Setting up a fully managed GCP Big Data Cluster using Cloud DataProc for running Apache Spark and Apache Hadoop clusters in a simpler, more cost-efficient manner Learn how to use Cloud Data Studio for visualizing the data on top of Big Query Implement and understand real-world business scenarios for Machine Learning, Data Pipeline Engineering WHAT WILL YOU LEARN By the end of the book, you will have come across different data services and platforms offered by Google Cloud, and how those services/features can be enabled to serve business needs. You will also see a few case studies to put your knowledge to practice and solve business problems such as building a real-time streaming pipeline engine, Scalable Data Warehouse on Cloud, fully managed Hadoop cluster on Cloud and enabling TensorFlow/Machine Learning API’s to support real-life business problems. Remember to practice additional examples to master these techniques. WHO IS THIS BOOK FOR This book is for professionals as well as graduates who want to build a career in Google Cloud data analytics technologies. While no prior knowledge of Cloud Computing or related technologies is assumed, it will be helpful to have some data background and experience. One stop shop for those who wish to get an initial to advance understanding of the GCP data platform. The target audience will be data engineers/professionals who are new, as well as those who are acquainted with the tools and techniques related to cloud and data space. ● Individuals who have basic data understanding (i.e. Data and cloud) and have done some work in the field of data analytics, can refer/use this book to master their knowledge/understanding. ● The highlight of this book is that it will start with the basic cloud computing fundamentals and will move on to cover the advance concepts on GCP cloud data analytics and hence can be referred across multiple different levels of audiences. Table of Contents 1. GCP Overview and Architecture 2. Data Storage in GCP 3. Data Processing in GCP with Pub/Sub and Dataflow 4. Data Processing in GCP with DataPrep and Dataflow 5. Big Query and Data Studio 6. Machine Learning with GCP 7. Sample Use cases and Examples

Machine Learning with BigQuery ML

Google BigQuery is a highly scalable, serverless, distributed data warehouse
technology built internally by Google in 2006 and then released for public use on
GCP in 2010. Thanks to its architecture, it can store petabytes of data and query ...

Author: Alessandro Marrandino

Publisher: Packt Publishing Ltd

ISBN: 1800562187

Category: Computers

Page: 344

View: 176

Manage different business scenarios with the right machine learning technique using Google's highly scalable BigQuery ML Key Features Gain a clear understanding of AI and machine learning services on GCP, learn when to use these, and find out how to integrate them with BigQuery ML Leverage SQL syntax to train, evaluate, test, and use ML models Discover how BigQuery works and understand the capabilities of BigQuery ML using examples Book Description BigQuery ML enables you to easily build machine learning (ML) models with SQL without much coding. This book will help you to accelerate the development and deployment of ML models with BigQuery ML. The book starts with a quick overview of Google Cloud and BigQuery architecture. You'll then learn how to configure a Google Cloud project, understand the architectural components and capabilities of BigQuery, and find out how to build ML models with BigQuery ML. The book teaches you how to use ML using SQL on BigQuery. You'll analyze the key phases of a ML model's lifecycle and get to grips with the SQL statements used to train, evaluate, test, and use a model. As you advance, you'll build a series of use cases by applying different ML techniques such as linear regression, binary and multiclass logistic regression, k-means, ARIMA time series, deep neural networks, and XGBoost using practical use cases. Moving on, you'll cover matrix factorization and deep neural networks using BigQuery ML's capabilities. Finally, you'll explore the integration of BigQuery ML with other Google Cloud Platform components such as AI Platform Notebooks and TensorFlow along with discovering best practices and tips and tricks for hyperparameter tuning and performance enhancement. By the end of this BigQuery book, you'll be able to build and evaluate your own ML models with BigQuery ML. What you will learn Discover how to prepare datasets to build an effective ML model Forecast business KPIs by leveraging various ML models and BigQuery ML Build and train a recommendation engine to suggest the best products for your customers using BigQuery ML Develop, train, and share a BigQuery ML model from previous parts with AI Platform Notebooks Find out how to invoke a trained TensorFlow model directly from BigQuery Get to grips with BigQuery ML best practices to maximize your ML performance Who this book is for This book is for data scientists, data analysts, data engineers, and anyone looking to get started with Google's BigQuery ML. You'll also find this book useful if you want to accelerate the development of ML models or if you are a business user who wants to apply ML in an easy way using SQL. Basic knowledge of BigQuery and SQL is required.

Data Science on the Google Cloud Platform

This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP.

Author: Valliappa Lakshmanan

Publisher: "O'Reilly Media, Inc."

ISBN: 1491974532

Category: COMPUTERS

Page: 404

View: 901

Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you’ll work through a sample business decision by employing a variety of data science approaches. Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science. You’ll learn how to: Automate and schedule data ingest, using an App Engine application Create and populate a dashboard in Google Data Studio Build a real-time analysis pipeline to carry out streaming analytics Conduct interactive data exploration with Google BigQuery Create a Bayesian model on a Cloud Dataproc cluster Build a logistic regression machine-learning model with Spark Compute time-aggregate features with a Cloud Dataflow pipeline Create a high-performing prediction model with TensorFlow Use your deployed model as a microservice you can access from both batch and real-time pipelines

Hands On Artificial Intelligence on Google Cloud Platform

By the end of this book, you'll have learned how to design and run experiments and be able to discover innovative solutions without worrying about infrastructure, resources, and computing power.

Author: Anand Deshpande

Publisher: Packt Publishing Ltd

ISBN: 1789536480

Category: Computers

Page: 350

View: 620

Develop robust AI applications with TensorFlow, Cloud AutoML, TPUs, and other GCP services Key Features Focus on AI model development and deployment in GCP without worrying about infrastructure Manage feature processing, data storage, and trained models using Google Cloud Dataflow Access key frameworks such as TensorFlow and Cloud AutoML to run your deep learning models Book Description With a wide range of exciting tools and libraries such as Google BigQuery, Google Cloud Dataflow, and Google Cloud Dataproc, Google Cloud Platform (GCP) enables efficient big data processing and the development of smart AI models on the cloud. This GCP book will guide you in using these tools to build your AI-powered applications with ease and managing thousands of AI implementations on the cloud to help save you time. Starting with a brief overview of Cloud AI and GCP features, you'll learn how to deal with large volumes of data using auto-scaling features. You'll then implement Cloud AutoML to demonstrate the use of streaming components for performing data analytics and understand how Dialogflow can be used to create a conversational interface. As you advance, you'll be able to scale out and speed up AI and predictive applications using TensorFlow. You'll also leverage GCP to train and optimize deep learning models, run machine learning algorithms, and perform complex GPU computations using TPUs. Finally, you'll build and deploy AI applications to production with the help of an end-to-end use case. By the end of this book, you'll have learned how to design and run experiments and be able to discover innovative solutions without worrying about infrastructure, resources, and computing power. What you will learn Understand the basics of cloud computing and explore GCP components Work with the data ingestion and preprocessing techniques in GCP for machine learning Implement machine learning algorithms with Google Cloud AutoML Optimize TensorFlow machine learning with Google Cloud TPUs Get to grips with operationalizing AI on GCP Build an end-to-end machine learning pipeline using Cloud Storage, Cloud Dataflow, and Cloud Datalab Build models from petabytes of structured and semi-structured data using BigQuery ML Who this book is for If you're an artificial intelligence developer, data scientist, machine learning engineer, or deep learning engineer looking to build and deploy smart applications on Google Cloud Platform, you'll find this book useful. A fundamental understanding of basic data processing and machine learning concepts is necessary. Though not mandatory, familiarity with Google Cloud Platform will help you make the most of this book.

BigQuery for Data Warehousing

BigQuery is a managed cloud platform from Google that provides enterprise data warehousing and reporting capabilities. Part I of this book shows you how to design and provision a data warehouse in the BigQuery platform.

Author: Mark Mucchetti

Publisher: Apress

ISBN: 9781484261859

Category: Computers

Page: 400

View: 557

Create a data warehouse, complete with reporting and dashboards using Google’s BigQuery technology. This book takes you from the basic concepts of data warehousing through the design, build, load, and maintenance phases. You will build capabilities to capture data from the operational environment, and then mine and analyze that data for insight into making your business more successful. You will gain practical knowledge about how to use BigQuery to solve data challenges in your organization. BigQuery is a managed cloud platform from Google that provides enterprise data warehousing and reporting capabilities. Part I of this book shows you how to design and provision a data warehouse in the BigQuery platform. Part II teaches you how to load and stream your operational data into the warehouse to make it ready for analysis and reporting. Parts III and IV cover querying and maintaining, helping you keep your information relevant with other Google Cloud Platform services and advanced BigQuery. Part V takes reporting to the next level by showing you how to create dashboards to provide at-a-glance visual representations of your business situation. Part VI provides an introduction to data science with BigQuery, covering machine learning and Jupyter notebooks. What You Will Learn Design a data warehouse for your project or organization Load data from a variety of external and internal sources Integrate other Google Cloud Platform services for more complex workflows Maintain and scale your data warehouse as your organization grows Analyze, report, and create dashboards on the information in the warehouse Become familiar with machine learning techniques using BigQuery ML Who This Book Is For Developers who want to provide business users with fast, reliable, and insightful analysis from operational data, and data analysts interested in a cloud-based solution that avoids the pain of provisioning their own servers.

Up and Running Google AutoML and AI Platform Building Machine Learning and NLP Models Using AutoML and AI Platform for Production Environment English Edition

In this book, you will learn about the basic concepts of Machine Learning and Natural Language Processing.

Author: Navin Sabharwal

Publisher: BPB Publications

ISBN: 9388511921

Category: Computers

Page: 178

View: 221

A step-by-step guide to build machine learning and NLP models using Google AutoML KEY FEATURES •Understand the basic concepts of Machine Learning and Natural Language Processing •Understand the basic concepts of Google AutoML, AI Platform, and Tensorflow •Explore the Google AutoML Natural Language service •Understand how to implement NLP models like Issue Categorization Systems using AutoML •Understand how to release the features of AutoML models as REST APIs for other applications •Understand how to implement the NLP models using the Google AI Platform DESCRIPTION Google AutoML and AI Platform provide an innovative way to build an AI-based system with less effort. In this book, you will learn about the basic concepts of Machine Learning and Natural Language Processing. You will also learn about the Google AI services such as AutoML, AI Platform, and Tensorflow, Google’s deep learning library, along with some practical examples using these services in real-life scenarios. You will also learn how the AutoML Natural Language service and AI Platform can be used to build NLP and Machine Learning models and how their features can be released as REST APIs for other applications. In this book, you will also learn the usage of Google’s BigQuery, DataPrep, and DataProc for building an end-to-end machine learning pipeline. This book will give you an in-depth knowledge of Google AutoML and AI Platform by implementing real-life examples such as the Issue Categorization System, Sentiment Analysis, and Loan Default Prediction System. This book is relevant to the developers, cloud enthusiasts, and cloud architects at the beginner and intermediate levels. WHAT YOU WILL LEARN By the end of this book, you will learn how Google AutoML, AI Platform, BigQuery, DataPrep, and Dapaproc can be used to build an end-to-end machine learning pipeline. You will also learn how different types of AI problems can be solved using these Google AI services. A step-by-step implementation of some common NLP problems such as the Issue Categorization System and Sentiment Analysis System that provide you with hands-on experience in building complex AI-based systems by easily leveraging the GCP AI services. WHO IS THIS BOOK FOR This book is for machine learning engineers, NLP users, and data professionals who want to develop and streamline their ML models and put them into production using Google AI services. Prior knowledge of python programming and the basics of machine learning would be preferred. TABLE OF CONTENTS 1. Introduction to Artificial Intelligence 2. Introducing the Google Cloud Platform 3. AutoML Natural Language 4. Google AI Platform 5. Google Data Analysis, Preparation, and Processing Services AUTHOR BIO Navin Sabharwal: Navin is an innovator, leader, author, and consultant in AI and Machine Learning, Cloud Computing, Big Data Analytics, Software Product Development, Engineering, and R&D. He has authored books on technologies such as GCP, AWS, Azure, AI and Machine Learning systems, IBM Watson, chef, GKE, Containers, and Microservices. He is reachable at [email protected] Amit Agrawal: Amit holds a master’s degree in Computer Science and Engineering from MNNIT (Motilal Nehru National Institute of Technology, Allahabad), one of the premier institutes of Engineering in India. He is working as a principal Data Scientist and researcher, delivering solutions in the fields of AI and Machine Learning. He is responsible for designing end-to-end solutions and architecture for enterprise products. He is reachable at [email protected]

Hands On Machine Learning on Google Cloud Platform

With this book, you will not only learn to build and train different complexities of machine learning models at scale but also host them in the cloud to make predictions.

Author: Alexis Perrier

Publisher:

ISBN: 9781788393485

Category: Computers

Page: 500

View: 886

Unleash Google's Cloud Platform to build, train and optimize machine learning models Key Features Get well versed in GCP pre-existing services to build your own smart models A comprehensive guide covering aspects from data processing, analyzing to building and training ML models A practical approach to produce your trained ML models and port them to your mobile for easy access Book Description Google Cloud Machine Learning Engine combines the services of Google Cloud Platform with the power and flexibility of TensorFlow. With this book, you will not only learn to build and train different complexities of machine learning models at scale but also host them in the cloud to make predictions. This book is focused on making the most of the Google Machine Learning Platform for large datasets and complex problems. You will learn from scratch how to create powerful machine learning based applications for a wide variety of problems by leveraging different data services from the Google Cloud Platform. Applications include NLP, Speech to text, Reinforcement learning, Time series, recommender systems, image classification, video content inference and many other. We will implement a wide variety of deep learning use cases and also make extensive use of data related services comprising the Google Cloud Platform ecosystem such as Firebase, Storage APIs, Datalab and so forth. This will enable you to integrate Machine Learning and data processing features into your web and mobile applications. By the end of this book, you will know the main difficulties that you may encounter and get appropriate strategies to overcome these difficulties and build efficient systems. What you will learn Use Google Cloud Platform to build data-based applications for dashboards, web, and mobile Create, train and optimize deep learning models for various data science problems on big data Learn how to leverage BigQuery to explore big datasets Use Google's pre-trained TensorFlow models for NLP, image, video and much more Create models and architectures for Time series, Reinforcement Learning, and generative models Create, evaluate, and optimize TensorFlow and Keras models for a wide range of applications Who this book is for This book is for data scientists, machine learning developers and AI developers who want to learn Google Cloud Platform services to build machine learning applications. Since the interaction with the Google ML platform is mostly done via the command line, the reader is supposed to have some familiarity with the bash shell and Python scripting. Some understanding of machine learning and data science concepts will be handy

Data Science on the Google Cloud Platform

This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP.

Author: Valliappa Lakshmanan

Publisher:

ISBN: 9781491974551

Category: Google Apps

Page: 408

View: 967

Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you’ll work through a sample business decision by employing a variety of data science approaches. Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science. You’ll learn how to: Automate and schedule data ingest, using an App Engine application Create and populate a dashboard in Google Data Studio Build a real-time analysis pipeline to carry out streaming analytics Conduct interactive data exploration with Google BigQuery Create a Bayesian model on a Cloud Dataproc cluster Build a logistic regression machine-learning model with Spark Compute time-aggregate features with a Cloud Dataflow pipeline Create a high-performing prediction model with TensorFlow Use your deployed model as a microservice you can access from both batch and real-time pipelines

Official Google Cloud Certified Professional Data Engineer Study Guide

This exam guide is designed to help you develop an in depth understanding of data engineering and machine learning on Google Cloud Platform.

Author: Dan Sullivan

Publisher: John Wiley & Sons

ISBN: 1119618452

Category: Computers

Page: 352

View: 139

The proven Study Guide that prepares you for this new Google Cloud exam The Google Cloud Certified Professional Data Engineer Study Guide, provides everything you need to prepare for this important exam and master the skills necessary to land that coveted Google Cloud Professional Data Engineer certification. Beginning with a pre-book assessment quiz to evaluate what you know before you begin, each chapter features exam objectives and review questions, plus the online learning environment includes additional complete practice tests. Written by Dan Sullivan, a popular and experienced online course author for machine learning, big data, and Cloud topics, Google Cloud Certified Professional Data Engineer Study Guide is your ace in the hole for deploying and managing analytics and machine learning applications. • Build and operationalize storage systems, pipelines, and compute infrastructure • Understand machine learning models and learn how to select pre-built models • Monitor and troubleshoot machine learning models • Design analytics and machine learning applications that are secure, scalable, and highly available. This exam guide is designed to help you develop an in depth understanding of data engineering and machine learning on Google Cloud Platform.

Building Machine Learning and Deep Learning Models on Google Cloud Platform

You will use this comprehensive guide for building and deploying learning models to address complex use cases while leveraging the computational resources of Google Cloud Platform.

Author: Ekaba Bisong

Publisher: Apress

ISBN: 1484244702

Category: Computers

Page: 709

View: 727

Take a systematic approach to understanding the fundamentals of machine learning and deep learning from the ground up and how they are applied in practice. You will use this comprehensive guide for building and deploying learning models to address complex use cases while leveraging the computational resources of Google Cloud Platform. Author Ekaba Bisong shows you how machine learning tools and techniques are used to predict or classify events based on a set of interactions between variables known as features or attributes in a particular dataset. He teaches you how deep learning extends the machine learning algorithm of neural networks to learn complex tasks that are difficult for computers to perform, such as recognizing faces and understanding languages. And you will know how to leverage cloud computing to accelerate data science and machine learning deployments. Building Machine Learning and Deep Learning Models on Google Cloud Platform is divided into eight parts that cover the fundamentals of machine learning and deep learning, the concept of data science and cloud services, programming for data science using the Python stack, Google Cloud Platform (GCP) infrastructure and products, advanced analytics on GCP, and deploying end-to-end machine learning solution pipelines on GCP. What You’ll Learn Understand the principles and fundamentals of machine learning and deep learning, the algorithms, how to use them, when to use them, and how to interpret your results Know the programming concepts relevant to machine and deep learning design and development using the Python stack Build and interpret machine and deep learning models Use Google Cloud Platform tools and services to develop and deploy large-scale machine learning and deep learning products Be aware of the different facets and design choices to consider when modeling a learning problem Productionalize machine learning models into software products Who This Book Is For Beginners to the practice of data science and applied machine learning, data scientists at all levels, machine learning engineers, Google Cloud Platform data engineers/architects, and software developers

Google Cloud Certified Associate Cloud Engineer Certification Guide 1

I have written this guide in three volumes to ensure I cover all the required domains. This guide is all you need because I put a lot of hard work into it to teach you how to cloud. Are you ready to get started?

Author: A. B. Lawal

Publisher: A. B. Lawal

ISBN: 8835857473

Category: Computers

Page:

View: 142

This study guide I believe is the only most updated book that can get you from wherever you are now to passing Google's Associate Cloud Engineer certification exam. It is awesome because I have already used it to help many students pass their official google cloud certification exams. To help you build strong confidence before writing the exam, I have added challenge labs assessment tests bank flash card banks and official practice exam questions, answers and remarks clear, downloadable screenshots and summaries for quick exam revision how to create a free trial GCP account with $300 credit you can use for 12 months I also provide support for everyone who bought this book. So if you did, you really have nothing to worry about. If you have questions, or if you need further help in your labs or hands-on projects, just contact me. I personally attend to every inquiry or concern of my readers and get back within 24 hours. This book includes use cases of the most recent Google Cloud Platform services. This ensures you have all you need to both pass your exam and to use the Google cloud in real life, even if you have little or no prior experience with the platform. You should get certified to prove you've learned the skills many companies need to run production workloads in the cloud. I have written this guide in three volumes to ensure I cover all the required domains. This guide is all you need because I put a lot of hard work into it to teach you how to cloud. Are you ready to get started? Order and read this book to begin your smooth journey to success in your Associate Cloud Engineer certification exam.

Google Cloud Platform for Data Engineering

The best part of the book though is its compartmental design which means that anyone from a beginner to an intermediate can join the book at whatever point they feel comfortable.

Author: Alasdair Gilchrist

Publisher: Alasdair Gilchrist

ISBN:

Category: Computers

Page:

View: 791

Google Cloud Platform for Data Engineering is designed to take the beginner through a journey to become a competent and certified GCP data engineer. The book, therefore, is split into three parts; the first part covers fundamental concepts of data engineering and data analysis from a platform and technology-neutral perspective. Reading part 1 will bring a beginner up to speed with the generic concepts, terms and technologies we use in data engineering. The second part, which is a high-level but comprehensive introduction to all the concepts, components, tools and services available to us within the Google Cloud Platform. Completing this section will provide the beginner to GCP and data engineering with a solid foundation on the architecture and capabilities of the GCP. Part 3, however, is where we delve into the moderate to advanced techniques that data engineers need to know and be able to carry out. By this time the raw beginner you started the journey at the beginning of part 1 will be a knowledgable albeit inexperienced data engineer. However, by the conclusion of part 3, they will have gained the advanced knowledge of data engineering techniques and practices on the GCP to pass not only the certification exam but also most interviews and practical tests with confidence. In short part 3, will provide the prospective data engineer with detailed knowledge on setting up and configuring DataProc - GCPs version of the Spark/Hadoop ecosystem for big data. They will also learn how to build and test streaming and batch data pipelines using pub/sub/ dataFlow and BigQuery. Furthermore, they will learn how to integrate all the ML and AI Platform components and APIs. They will be accomplished in connecting data analysis and visualisation tools such as Datalab, DataStudio and AI notebooks amongst others. They will also by now know how to build and train a TensorFlow DNN using APIs and Keras and optimise it to run large public data sets. Also, they will know how to provision and use Kubeflow and Kube Pipelines within Google Kubernetes engines to run container workloads as well as how to take advantage of serverless technologies such as Cloud Run and Cloud Functions to build transparent and seamless data processing platforms. The best part of the book though is its compartmental design which means that anyone from a beginner to an intermediate can join the book at whatever point they feel comfortable.

Official Google Cloud Certified Professional Cloud Architect Study Guide

This Sybex Study Guide covers 100 percent of the exam objectives, enabling you to design network, storage, and compute resources; meet all business and technical requirements; design for security and compliance, plan migrations; and much ...

Author: Dan Sullivan

Publisher: John Wiley & Sons

ISBN: 1119602440

Category: Computers

Page: 320

View: 350

Sybex's proven Study Guide format teaches Google Cloud Architect job skills and prepares you for this important new Cloud exam. The Google Cloud Certified Professional Cloud Architect Study Guide is the essential resource for anyone preparing for this highly sought-after, professional-level certification. Clear and accurate chapters cover 100% of exam objectives—helping you gain the knowledge and confidence to succeed on exam day. A pre-book assessment quiz helps you evaluate your skills, while chapter review questions emphasize critical points of learning. Detailed explanations of crucial topics include analyzing and defining technical and business processes, migration planning, and designing storage systems, networks, and compute resources. Written by Dan Sullivan—a well-known author and software architect specializing in analytics, machine learning, and cloud computing—this invaluable study guide includes access to the Sybex interactive online learning environment, which includes complete practice tests, electronic flash cards, a searchable glossary, and more. Providing services suitable for a wide range of applications, particularly in high-growth areas of analytics and machine learning, Google Cloud is rapidly gaining market share in the cloud computing world. Organizations are seeking certified IT professionals with the ability to deploy and operate infrastructure, services, and networks in the Google Cloud. Take your career to the next level by validating your skills and earning certification. Design and plan cloud solution architecture Manage and provision cloud infrastructure Ensure legal compliance and security standards Understand options for implementing hybrid clouds Develop solutions that meet reliability, business, and technical requirements The Google Cloud Certified Professional Cloud Architect Study Guide is a must-have for IT professionals preparing for certification to deploy and manage Google cloud services.

Building AI Applications on Google Cloud Platform

Noah Gift illustrates just now to harness this technology and deploy it successfully on Google Cloud Platform, demonstrating for developers how to employ the current best practices and automated tools to create analytics applications that ...

Author: Noah Gift

Publisher:

ISBN:

Category:

Page:

View: 526

4+ Hours of Video Instruction Overview There is a rapid evolution occurring in machine learning with tools like AutoML that basically automate many of the tedious aspects of machine learning and allow developers to focus on getting results into production. Noah Gift illustrates just now to harness this technology and deploy it successfully on Google Cloud Platform, demonstrating for developers how to employ the current best practices and automated tools to create analytics applications that solve real-world problems. Developers who want to take their Data Science skills to the next level and build AutoML applications in the Cloud will benefit from this unique course, as they learn how to use AutoML, Big Query, Python, and Google App Engine to create sophisticated AI. Description Cloud AutoML is a suite of machine learning products that enables developers with limited machine learning expertise to train high-quality models specific to their business needs. It relies on Google's state-of-the-art transfer learning and neural architecture search technology. Developers use Cloud AutoML's graphical user interface to train, evaluate, improve, and deploy models based on their data. This LiveLesson covers programming components essential to the development of AI and Analytics applications. The focus is on building real-world software engineering applications on the Google Cloud Platform. Several emerging technologies are used to demonstrate the process, including AutoML and Google BigQuery. The Python language is used throughout the course, as Python is becoming the de facto standard language for AI application development in the cloud. Download the supplemental files for this LiveLesson from http://www.informit.com/store/building-ai-applications-on-google-cloud-platform-livelessons-9780135973509 . About the Instructor Noah Gift is a lecturer at the UC Davis Graduate School of Management, MSBA program, the Graduate Data Science program, MSDS, at Northwestern and the Graduate Information and Data Science Program at UC Berkeley. He is teaching and designing graduate machine learning, AI, Data Science, and Cloud Architecture courses. These responsibilities include leading a multi-cloud certification initiative for students. Noah is a Python Software Foundation Fellow, AWS Subject Matter Expert (SME) on Machine Learning, AWS Certified Solutions Architect, AWS Certified Big Data-Specialist, AWS Certified Machine Learning-Specialist, AWS Academy Accredited I...

Google Bigquery Standard Requirements

You will receive the following contents with New and Updated specific criteria: - The latest quick edition of the book in PDF - The latest complete edition of the book in PDF, which criteria correspond to the criteria in.

Author: Gerardus Blokdyk

Publisher: 5starcooks

ISBN: 9780655418283

Category:

Page: 286

View: 782

Who will be responsible for documenting the Google BigQuery requirements in detail? What are the Essentials of Internal Google BigQuery Management? Is a Google BigQuery Team Work effort in place? What other areas of the organization might benefit from the Google BigQuery team's improvements, knowledge, and learning? Are we Assessing Google BigQuery and Risk? Defining, designing, creating, and implementing a process to solve a challenge or meet an objective is the most valuable role... In EVERY group, company, organization and department. Unless you are talking a one-time, single-use project, there should be a process. Whether that process is managed and implemented by humans, AI, or a combination of the two, it needs to be designed by someone with a complex enough perspective to ask the right questions. Someone capable of asking the right questions and step back and say, 'What are we really trying to accomplish here? And is there a different way to look at it?' This Self-Assessment empowers people to do just that - whether their title is entrepreneur, manager, consultant, (Vice-)President, CxO etc... - they are the people who rule the future. They are the person who asks the right questions to make Google BigQuery investments work better. This Google BigQuery All-Inclusive Self-Assessment enables You to be that person. All the tools you need to an in-depth Google BigQuery Self-Assessment. Featuring 676 new and updated case-based questions, organized into seven core areas of process design, this Self-Assessment will help you identify areas in which Google BigQuery improvements can be made. In using the questions you will be better able to: - diagnose Google BigQuery projects, initiatives, organizations, businesses and processes using accepted diagnostic standards and practices - implement evidence-based best practice strategies aligned with overall goals - integrate recent advances in Google BigQuery and process design strategies into practice according to best practice guidelines Using a Self-Assessment tool known as the Google BigQuery Scorecard, you will develop a clear picture of which Google BigQuery areas need attention. Your purchase includes access details to the Google BigQuery self-assessment dashboard download which gives you your dynamically prioritized projects-ready tool and shows your organization exactly what to do next. You will receive the following contents with New and Updated specific criteria: - The latest quick edition of the book in PDF - The latest complete edition of the book in PDF, which criteria correspond to the criteria in... - The Self-Assessment Excel Dashboard, and... - Example pre-filled Self-Assessment Excel Dashboard to get familiar with results generation ...plus an extra, special, resource that helps you with project managing. INCLUDES LIFETIME SELF ASSESSMENT UPDATES Every self assessment comes with Lifetime Updates and Lifetime Free Updated Books. Lifetime Updates is an industry-first feature which allows you to receive verified self assessment updates, ensuring you always have the most accurate information at your fingertips.